miércoles, 5 de septiembre de 2012

Human Genome Is Much More Than Just Genes


The human genome—the sum total of hereditary information in a person—contains a lot more than the protein-coding genes teenagers learn about in school, a massive international project has found. When researchers decided to sequence the human genome in the late 1990s, they were focused on finding those traditional genes so as to identify all the proteins necessary for life. Each gene was thought to be a discrete piece of DNA; the order of its DNA bases—the well-known "letter" molecules that are the building blocks of DNA—were thought to code for a particular protein. But scientists deciphering the human genome found, to their surprise, that these protein-coding genes took up less than 3% of the genome. In between were billions of other bases that seemed to have no purpose.
Now a U.S.-funded project, called the Encyclopedia of DNA Elements (ENCODE), has found that many of these bases do, nevertheless, play a role in human biology: They help determine when a gene is turned on or off, for example. This regulation is what makes one cell a kidney cell, for instance, and another a brain cell. "There's a lot more to the genome than genes," says Mark Gerstein, a bioinformatician at Yale University.
The insights from this project are helping researchers understand the links between genetics and disease. "We are informing disease studies in a way that would be very hard to do otherwise," says Ewan Birney, a bioinformatician at the European Bioinformatics Institute in Hinxton, U.K., who led the ENCODE analysis.
As part of ENCODE, 32 institutions did computer analyses, biochemical tests, and sequencing studies on 147 cell types—six fairly extensively—to find out what each of the genome's 3 billion bases does. About 80% of the genome is biochemically active, ENCODE's 442 researchers report today in Nature. Some of these DNA bases serve as landing spots for proteins that influence gene activity. Others are converted into strands of RNA that perform functions themselves, such as gene regulation. (RNA is typically thought of as the intermediary messenger molecule that helps make proteins, but ENCODE showed that much of RNA is an end product and is not used to make proteins.) And many bases are simply places where chemical modifications serve to silence stretches of our chromosomes.
sn-encode.jpg
This diagram illustrates a chromosome in ever-greater detail, as the ENCODE project drilled down to DNA to study the functional elements of the genome.
Credit: ENCODE project

ENCODE's results are changing how scientists think about genes. It found about 76% of the genome's DNA is transcribed into RNA of one sort or another, way more than researchers had originally expected. That DNA includes slightly less than 21,000 protein-coding genes (some researchers once estimated we had more than 100,000 such genes); "genes" for 8800 small RNA molecules and 9600 long noncoding RNA molecules, each of which is at least 200 bases long; and 11,224 stretches of DNA that are classified as pseudogenes, "dead" genes now known to really be active in some cell types or individuals. In addition, efforts to define the beginning end, and coding regions of these genes revealed that genes can overlap and have multiple beginnings and ends.
The project uncovered 4 million spots in our DNA that act as switches controlling gene activity. Those switches can be both near and far from the gene they regulate and act in different combinations in different cell types to give each cell type a unique genomic identity. In addition, at least some of the RNA strands produced by the genome also help to control how much protein results from a particular gene's activity. Thus, the regulation of a gene is proving much more complex than expected.
These and other findings appear today in six papers in Nature, and 24 in Genome Research and Genome Biology. Two additional papers are published today on Science online. In a database, ENCODE has created a map showing the roles of all the different bases. "It's like Google Maps for the human genome," says Elise Feingold, a program director for the National Human Genome Research Institute in Bethesda, Maryland, which funded ENCODE. With Google Maps one can choose various views to see different aspects of the landscape. Likewise, in the ENCODE map, one can zoom in from the chromosome level to the individual bases and switch from looking at whether those bases yield RNA or are places where DNA-regulatory proteins bind, for example.
This catalog "will change the way people think about and actually use the human genome, says John A. Stamatoyannopoulos, an ENCODE researcher at the University of Washington, Seattle.
Already he and others are harnessing this information—much of which is already publicly available—to learn about genetic influences on disease. Many large-scale studies have linked specific base changes to higher or lower risks for disorders ranging from diabetes to arthritis. Now researchers can look to see whether those variants are involved in regulation of some sort and if so, what genes are being regulated. For his study of cancer and epigenetics, "ENCODE data were fundamental," says Mathieu Lupien, a molecular biologist from the University of Toronto in Canada who was not associated with ENCODE.
References
SCIENCE

lunes, 3 de septiembre de 2012

Las bacterias se protegen de los antibióticos formando “grumos”

Las bacterias se protegen de los antibióticos formando “grumos”

¿Por qué cada año cientos de miles de personas enferman y mueren por infecciones de bacterias resistentes a los antibióticos? De acuerdo con un artículo que acaba de publicar en la revista Journal of Infectious Diseases, un equipo de investigadores de la Universidad de Michigan (EE UU) ha demostrado que los microbios pueden formar grumos resistentes a los antibióticos en muy poco tiempo, incluso en un líquido en constante flujo como la sangre.

En sus investigaciones comprobaron que bastan dos horas para que los microbios formen acumulaciones o grumos de diez a veinte bacterias, aproximadamente el mismo tiempo que los pacientes humanos tardan en desarrollar las infecciones. Los investigadores también demostraron que estos grumos se forman solamente cuando están presentes ciertas moléculas pegajosas de carbohidratos en la superficie de los microorganismos. Los grumos persistieron cuando se agregaron dos tipos diferentes de antibióticos, lo cual indica que al mantenerse agrupadas las bacterias se protegen de los medicamentos.

Cuando los investigadores inyectaron los grumos en ratones, las acumulaciones de bacteria se mantuvieron intactas aún después de completar muchas travesías del torrente sanguíneo. Los grumos, del tamaño aproximado de un glóbulo rojo de la sangre, incluso sobrevivieron a la filtración, que normalmente ocurre en los vasos sanguíneos más pequeños y que defiende al cuerpo contra los invasores. 

A lo largo de la última década estos investigadores han creado avanzados modelos matemáticos de la dinámica de fluidos en el torrente sanguíneo y las condiciones necesarias para la promoción del crecimiento de las bacterias. En concreto, el biorreactor usado para obtener los resultados más recientes se denomina célula Taylor-Couette y usa cilindros concéntricos, uno de los cuales responde a un motor. Los investigadores añadieron un medio líquido de crecimiento al reactor y controlaron cuidadosamente la rotación para producir remolinos en el líquido que son similares a los de la sangre. Después añadieron bacterias Klebsiella pneumoniae una de las fuentes más comunes de infección del torrente sanguíneo. Los científicos probaron dos antibióticos que los médicos a menudo prescriben contra la sepsis: ceftriaxona y ciprofloxacina. Ninguno fue eficaz para matar a las bacterias organizadas en grumos.

bacteria-grumos

Muy Interesante
Link artículo: http://www.muyinteresante.es/las-bacterias-se-protegen-de-los-antibioticos-formando-grumos

La ameba "granjera"


La ameba "granjera"

La ameba Dictyostelium discoideum, un organismo de conocido comportamiento social que se alimenta de bacterias, decide en determinadas circunstancias no consumir todos los recursos de una zona paraincorporar algunos microbios a su cuerpo, donde fertilizan, para después depositarlos en un cultivo en una nueva localización, según ha podido comprobar un equipo de investigadores.

El trabajo, dirigido por la científica Debra Brock, de la Universidad Rice (Texas, EEUU) y publicado en la revista Nature, apunta a que este organismo unicelular desarrolla un comportamiento "sofisticado y sorprendente" cuando se alimenta, dado que un tercio de los individuos de esta especie observados por los investigadores han mostrado habilidades parecidas a las de los primitivos "granjeros", transportando, cultivando y recolectando su propio alimento.

La agricultura está reconocida como uno de los puntos clave del éxito de la adaptación humana al medio, y es una destreza asociada habitualmente a las formas de vida que han desarrollado relaciones sociales estructuradas. Los científicos ya habían descubierto con anterioridad que algunas especies sociales de insectos, como las termitas y determinadas clases de hormigas, son capaces de establecer sistemas de cooperación entre sus individuos y practican alguna clase de agricultura primitiva. 

ameba-granjera

Referencias
Link del artículo http://www.muyinteresante.es/la-ameba-qgranjeraq
Muy Interesante.